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Introduction

* The principle goal of image restoration is similar to
that of image enhancement in obtaining an improved
image according to some criterion

* Image enhancement is subjective in the sense that the
used techniques are heuristic and applied to take
advantage of the psychophysical aspects of the human
visual system

» Image restoration is objective in the sense that a the
degradation introduced into the image is known based
a priori knowledge of the degradation phenomena

» Restoration can be performed in spatial or frequency
domains. Spatial treatment is applicable only when the
degradation is additive noise



A Degradation /Restoration Model
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DEGRADATION RESTORATION

* The primary objective of restoration is to obtain an
estimate of the original image based on the knowledge of
the degradation and noise functions

* The degraded image g(x,y) can be modeled as

glx,y)=h(x,y)e f(x,y)+n(x,y)
Or

Gluv)=H(uv)F(u,v)+N(u,v)



Noise Models

* Noise is introduced into a digital image during image
acquisition and/or transmission

* Noise introduced during acquisition is dependant on
the quality of sensing elements and the environmental
conditions (Light levels and temperature)

* Image corruption during transmission is primarily due
to channel interference (lightning and atmospheric
disturbances)

* In our discussion, we assume that the noise
introduced into the image is a random variable that is
independent (uncorrelated) of the spatial coordinates
and pixel values



Noise Models
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Noise Models

* Rayleigh Noise
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* |t is useful in characterizing noise in range imaging

* |tis useful in approximating skewed histograms



Noise Models

* Erlang
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e The variance
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e |t is useful in characterizing noise in laser imaging
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Noise Models
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* Exponential Noise
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e |t is useful in characterizing noise in laser imaging



Noise Models
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e Uniform Noise
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* It is the least descriptive of all types



Noise Models
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* Impulse (salt-and-pepper) Noise

p(z)=1

E_T,z:a

B, ,z=b

0, otherwise

» Usually represented as black and white dots in the image

» |t appears in in situations with quick transitions such as faulty
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Noise Models
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Noise Models

I
* Periodic Noise

* Periodic noise is usually added to the image from
electrical and electromechanical interference during
Image acquisition

* |t is the only type of spatially dependent noise that we
will discuss

* Periodic noise can be greatly reduced using frequency
domain filtering




Noise Models
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* Estimating Noise Parameters
e Periodic noise parameters can be estimated by

Inspection of the Fourier transform of the image since
periodic noise tend to produce spikes that can be easily

detected visually
Infer periodicity of noise components from the image
(difficult)

* The parameters of noise PDFs may be

Known partially from sensor specifications

Estimated from acquired images by examining the

histograms of small patches of reasonably constant

background intensity.

The approximate shape of the histogram determines the

type of noise and we can compute the mean and variance

by L-1 L-1

2= zix py(z;) 6’ = (zi—z)p(z)
i=0

i=0



Noise Models
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* Estimating Noise Parameters = Example

L

Gaussian Rayleigh Uniform

e Histograms of reasonably constant intensity region
extracted from images corrupted by Gaussian,
exponential, and uniform



Restoration in the Presence of Noise Only

¢ If noise is the only degradation present, the degradation
model becomes
glx.y)=f(xy)+n(xy)
Or
Glu,v)=F(u,v)+N(uv)

* Restoration can be simply done by subtraction if the
noise values are known!

» Alternatively, we use spatial filtering when only additive
noise is present

* In what follows, we explore new types of spatial filters.
Filtering using the new filters is done in the same way
discussed in Chapter 3



Restoration in the Presence of Noise Only

* Mean Filters
* For a rectangular subimage window S, of size mxn that is centered at
pixel (X,y), we define the following mean filters

e Arithmetic Mean Filter

It's capable of reducing noise levels, but it smoothes local variations
In an image

e Geometric Mean Filter

fxw=| T es0)

(5.t )eSy

gy

Achieves similar smoothing results as the arithmetic mean filter, but
tends to lose less details in the image



Restoration in the Presence of Noise Only

Original Image
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Restoration in the Presence of Noise Only

e Mean Filters
e Harmonic Mean Filter

mn

1
Z g(s,t)

rs,z‘)ES'ﬂ.

flx,y)=

The harmonic mean filter works well for salt noise, but fails for
pepper noise. It does well also for other types of noise

e Contraharmonic Mean Filter

Z g(s,1)¢7

(5.t )ES,

D> slsi)f

(5. )ESyy

S(x,y)=

Q is the order of the filter

Well suited reducing or virtually eliminating salt-and-pepper noise.

Positive Q eliminates pepper noise while positive Q eliminates salt
noise

It is important to select the proper sign of the filter



Restoration in the Presence of Noise Only
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Restoration in the Presence of Noise Only

_ 22 |
Image Image
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Restoration in the Presence of Noise Only

e Order-Statistic Filters

Order-statistic filters are spatial filters whose response is based
on ordering of the values of the pixels contained the image area
under the filter mask

e Median Filter

Replaces the value of the pixel by the median of the intensity
levels in the neighborhood of the pixel

f(x,y)=median{g(s,t)}

(5,1 )8

It's capable of reducing noise levels with considerably less
blurring than linear smoothing filters

It's particularly effective on unipolar or bipolar impulsive
hoise



Restoration in the Presence of Noise Only

A median filter is good for removing impulse, isolated noise

Degraded image
O Salt noise

B Pepper noise

Moving
window

Pepper noise

Salt noise

Median /
)

N

Sorted
array

Filter output

Normally, impulse noise has high magnitude
and is isolated. When we sort pixels in the
moving window, noise pixels are usually

at the ends of the array.

Therefore, it's rare that the noise pixel will be a median value.



Restoration in the Presence of Noise Only

* Recursive median filtering
%,4 3 \ RO e o ’ ; :

Image
corrupted 3x3
with Median
pepper filtering
noise 15t pass
3x3 Ix3
Median Median
filtering filtering
2"d pass 34 pass

Recursive median filtering is perfect for impulse noise. However,
recursion filtering may lead to blurring



Restoration in the Presence of Noise Only

e Order-Statistic Filters
¢ Maximum Filter

Replaces the value of the pixel by the maximum of the
intensity levels in the neighborhood of the pixel

M

f(x,y)=maximum{g(s,t)}
(.s,fje.‘:?:,lj.

It is useful in finding the brightest points in the image and in
reducing pepper noise
* Minimum Filter

Replaces the value of the pixel by the minimum of the
intensity levels in the neighborhood of the pixel

f(x,v)=minimum{g(s,t)}
(5.1 )ESxy

It is useful in finding the darkest points in the image and in
reducing salt noise



Restoration in the Presence of Noise Only
A =
* Min and Max Filtering

e %

Image Image
corrupted corrupted
with with white
pepper noise
noise
Image Image
filtered filtered
with 3x3 with 3x3
max filter min filter




Restoration in the Presence of Noise Only
» Order-Statistic Filters i
 Midpoint Filter
}(x, V)= ;‘:I??{]I imum?{g(s,t)} +minimum{g(s,t )}}

(5, JES s (5.0 )ESyy

It works best for randomly distributed noise such as
Gaussian and uniform noise

 Alpha-Trimmed Mean Filter

Compute the mean intensity of the trimmed values for the
pixels in the neighborhood. Trimming is performed by
deleting d/2 lowest and d/2 highest intensity values

It is useful in situations involving multiple types of noise such
as a combination of impulse and Gaussian noise



Restoration in the Presence of Noise Only
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Restoration in the Presence of Noise Only
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Restoration in the Presence of Noise Only

* Adaptive Filters

* The filters discussed so far are applied to an image
without considering the fact that image characteristics may
vary from one location to another

* |n what follow, we discuss a new class of filters called
adaptive filters

* |n such filters, the filtering operation is modified from one
location to another based on some local measures, such as
the mean and variance of the pixel neighborhood

* Adaptive filters are usually much better but at the expense
of increased filter complexity



Restoration in the Presence of Noise Only

* Adaptive , Local Noise Reduction Filter

* The mean intensity and variance are two statistical
measures that are widely used because of their closely
related relation with the appearance of the image

* The mean gives the average intensity in the region while
variance is a measure of contrast

e The filter under discussion uses four different values to
perform filtering in a certain neighborhood

g(x,y) : the value of the pixel (x,y) in the noisy image

2 . . .
g, . the variance of the noise corrupting f(x,y)
gf : the local variance for the pixels in S,

my : the local mean for the pixels in S,



Restoration in the Presence of Noise Only
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* Adaptive, Local Noise Reduction Filter

* Assumptions of Operation

If crg s zero, the filter should return the value of g(x,y). This is the

trivial case in which there is no noise in the image

If the local variance is high relative to J;‘; . the filter should return a
value close to g(x,y) since high local variance is usually associated
with edges and these have to be preserved

If the two variances are equal, the filter should return the mean
value of the pixels in S, .This situation correspond to the case
when the local area has similar properties as the overall image, and
local noise is to be removed by averaging.

* Based on these assumptions, we can define this adaptive filter as

A 2

fx)=g(xv)-—L(g(x,y)=my )

or
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Image
corrupted
by additive

Gaussian
noise with
Zero mean

and s2=1000

Image
obtained
using a /x7/
geometric
mean filter

Image
obtained
using a /x7/
arithmetic
mean filter

Image
obtained
using a /x/
adaptive
noise
reduction
filter




Restoration in the Presence of Noise Only
Adaptive Median Filter
35

Purpose: want to remove impulse noise while preserving edges

Algorithm: Level A:

Level B:

Al= Zmedian ~ Zmin

A2= Zmedian ~ Zmax

If A1 > 0 and A2 < 0, goto level B

Else increase window size
If window size <= 5., repeat level A
Else return z,

Bl= ny ~ Zhin

B2= ny ~ Zmax

If B1 > 0and B2 < 0, return z,

Else return z_.gian

where 7 = minimum gray level value in 5,

Z
Z

ax = Maximum gray level value in 5,
nedian = Median of gray levels in 5,

z,, = gray level value at pixel (;))

S

nax = Maximum allowed size of 5,



Restoration in the Presence of Noise Only
Adaptive Median Filter
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Level A: Al=z_ . — 7 . Determine
A2= Z_ cdian — Zmax ~ whether z__;...

IfAl >0 and A2 < 0, gotolevel B ~J 18 animpulse or not
Else > Window is not big enough
increase window si
It window size <=§_,, repeat level A
( Else return z,
L 2z is not an impulse

evel B:

median
Determine
Bl=z—zy, Whetl.ler Zyy
B2=z,, — Zp 1s an impulse or not

If B1>0and B2 <0, = z,, is not an impulse
return z,, = to preserve original details

Else
return z_ ;... =2 to remove impulse



Restoration in the Presence of Noise Only

aﬁtlve Median Filter

mnmﬂ:

.
3 -il -'N'-.l—

Image obtained
using an adaptive
median filter with
Smax - 7

e ol e i

Image corrupted Image obtained
by salt-and-pepper using a 7x7
noise with median filter

p,~p,=0.25

More small details are preserved



Periodic Noise Reduction By Frequency Domain
Filtering

* Periodic noise appears as concentrated bursts of energy
in the frequency domain at locations corresponding to
the periodic frequencies

e Thus, periodic noise can be analyzed and filtered
effectively using frequency domain filtering

* Use selective filtering

e Bandpass filters

e Notch filters



Periodic Noise Reduction By Frequency Domain

Filterin
39 | .

e Bandreject Filters

One principle application of bandreject filters is in removing noise
components whose locations are approximately known

A good example is an image that is corrupted by periodic noise
that can be approximated as two-dimensional sinusoidal functions

We know that the Fourier transform of a sine consists of two
impulses that are mirror images of each other about the origin of
the transform

We may use ideal, Butterworth, or Gaussian bandreject filters




Periodic Noise Reduction By Frequency Domain
Filterin

* Bandreject Filters — Example

Image corrupted Siusoidal Noise Magnitude of Spectrum

Butterworth Bandreject Filter Filtered imge '



Periodic Noise Reduction By Frequency Domain

Filterin
41 | .

* Notch Filters

Notch filters perform filtering by rejecting frequencies in a
predefined neighborhoods about the center of the frequency
rectangle

Due to the symmetry of the Fourier transform, notch filters
should appear symmetric about the origin

We may use ideal, Butterworth, or Gaussian notch filters

Notch filters can be arbitrary shape

Hin. v) Hiu, v) Hiu, v)



Periodic Noise Reduction By Frequency Domain

Filterin
m—

* Notch-reject Filters = Example

Image Corrupted by Sinusoidal Noise Magnitude of Spectrum

Notch-reject Filter along the vertical
axis

Filtered image



Estimation of Degradation Model

g(x,y)=T(x y)*h(X,y)+n(x,y)
or
G(u,v) =F(u,v)H(u,v)+ N(u,v)

to estimate or

Why? If we know exactly h(x,y), regardless of noise, we can do
deconvolution to get f(x,y) back from g(x,y).

1. Estimation by Image Observation
2. Estimation by Experiment

3. Estimation by Modeling



Estimation of Degradation Function

* Estimation by Image Observation

e Assume that a degraded image is available without any
knowledge about the degradation function, which is assumed to
be linear, position-invariant

* One way to estimate the degradation function is to gather
information from the image itself (like a blurred image)

e For example, we can look at small patch of the image where the
noise is minimum and then process the patch to arrive at
pleasant result

e From the degraded image and the processed image (the
estimate of original) we compute
G.(u,v)

A

H.(uyv)=
F(u,v)
e Then we can generalize to find H(u,v) with the same
characteristics of Hs(u,v)



Estimation by Image Observation
Original.image (unknown) Degraded.image

f(x,y) f(x,y)*h(x,y) g(x,y)
Observation
Subimage
Estimated Transfer G.(u V)& &
function Oj sy 9,(X, y)
H(u,v) ~ H, (u,v) = 2Y)
F.(u,v)
This case is used when we F (U V)& Recon;structed
know only g(x,y) and cannot S\ Subimage

repeat the experiment! f.(X,y)



Estimation of Degradation Function

e Estimation by Experimentation

e It is possible if the imaging system used to acquire the
degraded image is available

* Imaging is repeated with different system settings until the
almost the same degraded image is obtained

* Using such settings, the system is used to image an impulse
(a small dot of light that is as bright as possible) to obtain
the impulse response of the degradation

¢ In the frequency domain, we can compute the degradation
function H(u,v) from the degraded image by

Bl e

where A is the impulse strength



Estimation by Experiment

Used when we have the same equipment set up and can repeat the

experiment. .
Response image from

Input impulse image the system

| e |

DFT{AS(X,y)}=A G(u,Vv)

Q> H(u,v)= G(:’V) <D




Estimation of Degradation Function

_ a8
e Estimation by Modeling

e It is based on finding a mathematical expression for the
degradation function
e Finding such mathematical expression can be through

some assumptions such as physical characteristics of the
environment during the imaging process

deriving the mathematical model from basic principles

e For example,a model proposed to model atmospheric
turbulence is

2,.2.5/6
H(H,V)Ze_k(u +v° )

where k is a constant that depends on the nature of the
turbulence with higher values indicating higher turbulence
effects



Estimation of Degradation Function
a5

Used when we know physical mechanism underlying the image

formation process that can be expressed mathematically.
Severeturbulence

“Originalimage

Example:

Atmospheric
Turbulence model

.......
el

H (u’ V) _ e—k(u2+v2)5/6

A F 2

Mild turbulence

TS
Aok =0:00025

il




Estimation of Degradation Function

e Estimation by Modeling - Example
e Estimation of blurring degradation based on linear
uniform motion

e Assume that the image function undergoes a planner motion
and that x,(t) and y,(t) are the time-dependant components of
motion in the x and y directions

e The total exposure at any point of the recording medium is
obtained by integrating the instantaneous exposure over the
time interval of imaging event

e If T is the duration of exposure , it follows that

T
g(x,y) = j.f(*x—xo('f),}’—}’o(if))df
0



Estimation of Degradation Function

* Estimation by Modeling - Example

e Estimation of blurring degradation based on linear
uniform motion

e The Fourier transform of g(x,y) is given by

G(u,v) = J J. g(x,y )e‘_“‘f L T dxdy

— 00 —00

o

ow T

= X—Xo(1),y—vo(t)|dr e 72 gy
f[ 0 Y=>Xo )

—o0—o0 ()

* Reversing the order of integration

T
G(IJ,L’):J.

0

oD o0

J J. f[1 __;;;0_(()’}; _yﬂ(r)]e—jZH(uﬂw)dxdy

—00 —a0

dt



Estimation of Degradation Function

52
e Estimation by Modeling - Example

e Estimation of blurring degradation based on linear
uniform motion

e The term inside the outer brackets from the previous slide is
the Fourier transform of the displaced function f[x-x,(t),y-yo(t)]

T

0
T

= F(u, V)J. ¢ I o) 4y
0
= F(u,v)H(u,v)

e If X4(t) and y,(t) are known, the degradation function is can be
directly found



Estimation of Degradation Function
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* Estimation by Modeling - Example
e Estimation of blurring degradation based on linear
uniform motion

e Let the image undergoes a uniform motion in the x direction
only with x,(t) = at/T, then the degradation function is given by
I - — jmua
H(u,v)= ——sin(mua )e
Tua

e |f we also have a uniform motion in the y direction also by y,(t)
= bt/T, then the degradation function is

H(H,V): .S’f??(ff(lia+bv))€ ]?I(Efﬂ—l—tb)
m(ua+vb)



Estimation of Degradation Function
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* Estimation by Modeling - Example

e Estimation of blurring degradation based on linear
uniform motion

Example of blurring by the function on the previous slide witha =b =
0. andT = |



Inverse Filter
1

From degradation model: G(u,v) = F(u,v)H (u,v)+ N(u,Vv)
after we obtain A v, v), we can estimate A v, V) by the inverse filter:

G(u,v)
H(u,v)

F(u,v) = = F(u,v)

Noise is enhanced

when Ay, v) is small. To avoid the side effect of enhancing

noise, we can apply this formulation
to freq. component (¢, v) with in a
radius D,from the center of Ay, V).

In practical, the inverse filter is not
Popularly used.



Inverse Filter: Example

Blurredsimage

Rg;ult of ap
= thesfull fil

P e
— .
-

ey

Result of~ap

@ymg Result of applying

Due to Turbulence he filter with 2,=70fhe filter with D,=85

H (u V) _e —0.0025u?+v?

)5/6




Objective:-optimize-mean-square-error:- €° = E{(f — f)z}

Wiener Filter Formula:

H™(u,v)S, (u,v)

F(u,v) =

S, (u,v)H (u,v)\2 +S,(u,v)

H™(u,v)

G(u,v)

1

H (u,v)\2

_‘H (U,V)\Z +3,(u,v)/S¢ (u,v) |

G(u,v)

where

H u,v) = Degradation function

S5, (u,v) = Power spectrum of noise
5,(u V) = Power spectrum of the undegraded image

HUVY) H ) +S,(uv)/S, (uv)

G(u,v)



Approximation of Wiener Filter
ﬂViener Filter Formula:

|£(U,V): 1 ‘H(u’\L)JZ__ \G(U,V)
HUY) [Hu+S, uv)7S, (uv) D
N\

Difficult to estimate
Approximated Formula:

1 H(u,v)|

V)= _H(U,V) \H(u,v)\2 +K

G(u,v)

Practically, K'is chosen manually to obtained the best visual result!



Wiener Filter: Example

Blurredsimage
Due to Turbulence

Result of- the IQVEI‘S
fllter Wlth D70

SRR MY S A
Nt

R
T Sl D, e

Result-af the

D fullWlener filter




Wiener Filter: Example (cont.)

/ £

Result ofvt,h_é i@eréé
|_fitemwith 0,=70*

o~

y
/

Result of the.. "=
P &

Blurreddmage _‘ \
- Wiener filterisse -

Due to Turbulence




Example: Wiener Filter and Metion Blurring

wimage *
degraded

by motiorf s
blur +
AWGN

Note: K'is
| chosen
! manually



